
Self-Authenticating Traditional Domain Names
Paul Syverson Matthew Traudt

Center for High Assurance Computer Systems
U.S. Naval Research Laboratory

Washington, DC 20375
Email: firstname.lastname@nrl.navy.mil

Abstract—We introduce Self-Authenticating Traditional (SAT)
domain names. SAT domains are traditional recognizable do-
mains resolvable via the Domain Name System (DNS). They
are also self-authenticating—they encode in the name itself a
public key for authenticating the SAT domain. We present
an implementation of our SAT domains for servers and a
corresponding Firefox WebExtension that validates connections
to them.

SAT domains weave security directly into the fabric of the
Web by building authentication into URLs themselves. Thus, by
simply posting links to other SAT domains, a SAT site that a user
trusts assures that user of the ability to make hijack-resistant
connections to any of those domains. Because just the address
attested in this way is sufficient for users to create a secure
connection to a recognizable domain, we call this dirt simple
trust. We present implemented examples of this and describe
other channels to establish dirt simple trust.

The public keys we embed in SAT domain names are in the
format of Tor onion service keys. Specifically, a SAT domain
includes the encoding of an onion service public key as a
subdomain of a registered domain name. But the client can
be ignorant of Tor and need not direct traffic over any onion
routing network to obtain our protections. This makes SAT
domains compatible with other browsers and standard routing
infrastructure. Nonetheless, our extension also works in Tor
Browser.

We also explore systems developed and deployed by others
that associate a self-authenticating domain with a traditional DNS
domain using existing Web authentication mechanisms, but with-
out building security in directly. Recently, major providers have
deployed .onion alternative services to support load balancing
and improved performance for Tor users. Though superficially
similar to SAT domains, our analysis indicates that these al-
ternative services are not actually self-authenticating. They also
increase the effectiveness and impact of client tracking attacks
acknowledged in the design of alternative services. We describe
such attacks and describe another benefit of our WebExtension:
it provides an interface allowing users to selectively block or
permit alternative services.

Index Terms—Self-authentication, TLS Certificates, Tor Onion
Services, Website Authentication, Alternative Services

I. INTRODUCTION

Consider Alice, who is aware that her Internet connec-
tions to popular news and social media sites (e.g., cnn.com,
news.yahoo.com, facebook.com, twitter.com) are sometimes
hijacked by authorities. Alternatively, suppose Alice’s con-
nections to popular commercial sites (e.g., amazon.com,
ebay.com) may be hijacked by criminals. Currently, Alice
has limited protections against such concerns. Authentication
of intended destination websites via TLS should prevent her

from accepting connections attacked by address-lookup or
route hijacks. But, as we will discuss, authentication can also
be hijacked. She could avail herself of a VPN, if access to
VPNs is not also blocked or affected by hijackers. Even if
she can connect through a VPN, she must trust the VPN to
not hijack her activity or sell information about it, or simply
to adequately protect it—trusts that would be misplaced in
a nontrivial fraction of commercial VPNs [1]. Furthermore,
whatever local protections a VPN would provide, it would not
prevent hijacks from occurring between exiting the VPN and
her intended destinations.

Suppose, however, that Alice is accessing a self-
authenticating domain name, a domain name that incorporates
into itself the information needed to authenticate a connection
to the domain. Specifically, suppose public keys are appropri-
ately embedded into domain names of such recognizable sites
that Alice attempts to visit, and suppose her browser is able
to check the proper mutual authentication of such public keys
with the TLS key in the certificate received when she visits one
of these domains. In that case, she would be immune to today’s
common connection hijacks derived from DNS (Domain Name
System) and TLS-certificate hijacks.

The threat of such hijacks has long been a concern and
is well documented. As one recent example, in January
2019 FireEye reported very large scale manipulation of DNS
records to facilitate the obtaining of fraudulent TLS certifi-
cates [2]. Shortly thereafter, the U.S. Department of Homeland
Security’s Cybersecurity and Infrastructure Security Agency
(CISA) issued an emergency directive outlining such attacks
targeting numerous U.S. excecutive branch domains and set-
ting out required actions to mitigate them [3]. DNSSEC and
other mitigations to DNS and TLS-certificate hijack and mis-
use have been in active development and deployment since the
1990s. While these efforts have made important infrastructure
security improvements, incidents such as the above indicate
that a significant threat remains.

Challenges to providing secure site access stem partly from
an inherent tension between desired properties: a user should
be able to readily identify or recognize the site, it should
be hard to deceive users’ perceptions about recognizing the
site, and this should work for arbitrary users who may have
no prior familiarity with the specific site. This tension is
somewhat similar to Zooko’s triangle, which conjectures that
names can be any two of human-meaningful, secure, and
decentralized, but not all three at once [4]. The compromise



solution generally accepted by the current infrastructure puts
the authentication of connecting to recognizable traditional
domains under the control of certificate authorities (CAs) that
vouch for the binding of the domain name to the TLS key
used to secure a connection. We intend to maintain existing
protections but to combine them with decentralized security
mechanisms. Amongst other things, this will help prevent the
sorts of attacks we described above.

A. Contributions

We introduce self-authenticating traditional (SAT) domains.
These embed security directly into the URLs that comprise the
nodes of the graph that is the World Wide Web, and do so in
a way that counters hijack by either Certificate Authorities
or someone attacking certificate issuance to perform such hi-
jack. Nonetheless, SAT domains also incorporate meaningful,
familiar names. Whether a client has linked to a SAT URL
from another site or found it via a search engine, a trusted
source can support hijack resistant connections to a site with
a SAT address by attesting to just a meaningful displayed
URL by itself without stating anything more than the URL,
e.g., without saying anything about keys or other data. And
all of this is backwards compatible with existing browsers and
Web security protocols that have no awareness of SAT domain
properties or mechanisms. Specific contributions set out in this
paper include the following.

• We describe SAT domains and provide a specification
of them. The SAT domains we describe are comprised of
a traditional domain name base with a self-authenticating
subdomain derived from Tor’s .onion addresses. A SAT
domain for the base domain example.com has the struc-
ture [onion-address].example.com; we thus also refer to
the self-authenticating subdomain as an onion subdomain.
SAT domain names are cryptographically bound to the
keys that authenticate them, as well as to a DNS name,
which may be familiar and recognizable by users. They
are backwards compatible in that browsers with no cog-
nizance of the offered protections will operate normally.
• We present examples of TLS Domain Validation (DV)
certificates we obtained for SAT domains. We describe
our implementation and deployment of corresponding
SAT websites, to which we validate connection in a
browser with a Firefox WebExtension for this purpose.
• We present our implementation of that Firefox Web-
Extension, which checks both that the key encoded in
the onion subdomain authenticates a presented TLS cer-
tificate and that the TLS certificate authenticates the onion
subdomain. We describe the various checks it performs
using satis.system33.pw as an example traditional domain
name, together with an associated SAT domain. We
make all client and server software along with support-
ing files and demonstration videos freely available at
https://github.com/pastly/satis-selfauth-domains .
• We describe other features of the WebExtension. These
include a means for validation of SAT domains in the

form of automatically updating lists. The lists are them-
selves provided via self-authenticating channels, and we
offer a simple interface for users to select whether or not
they trust a channel for attesting to SAT domain validity.
The WebExtension also supports automatic rewriting of
base domain URLs to their corresponding SAT domains,
similar to HTTPS Everywhere [5]. In this way, they also
support discovery of SAT domains.
• We describe HTTP Alternative Services that use Tor’s

.onion services as alternatives, for example as recently
deployed by Facebook and Cloudflare. Like SAT do-
mains, these also combine traditional domain names with
self-authenticating domains. We analyze these and find,
however, that they are not actually self-authenticating at
all. We also discuss how they facilitate first and third
party tracking and censorship. In light of this we add a
feature to our WebExtension allowing users to permit or
block alternative services before they are used.
• We discuss possible future developments and research

directions, in particular those stemming from the novel
SAT domain property of weaving security into the fabric
of the Web itself.

II. BACKGROUND AND BASIC GOALS

Our focus in this paper is authentication, assurance that
a client is connecting to a destination that is intended or
recognizable. Our adversary may be able to direct clients
to unintended destinations, but it should not be be able to
convince clients that they are connected to the URL displayed
in the address bar when they are not.

A. Adversary model

We are concerned with an adversary that can direct connec-
tions of clients to incorrect destinations. As in our opening
example, this could be an adversary that manipulates DNS
lookups for particular domains for a targeted class of users,
such as those using ISPs in a particular jurisdiction. It could
also be an adversary capable of BGP hijack of traffic to an IP
range covering an intended destination.

Our adversary’s other primary capability is to obtain fraudu-
lent TLS certificates. In practice, this too can be accomplished
in a number of different ways. The adversary might be a
misbehaving Certificate Authority, in which case the CA can
simply issue the fraudulent certificate itself. Alternatively the
adversary might be able to attack the means by which a CA
validates control of a domain when issuing a TLS certificate.

By far the most prevalent type of TLS certificate is a Do-
main Validation (DV) certificate. To validate domain control
for issuing a DV certificate, the CA will check if the applicant
can respond to a particular email message to that domain, can
publish a specified DNS TXT record for that domain, or can
publish a challenge nonce at a URL under that domain [6]. An
adversary able to subvert any of these checks for the domain in
question would be able to obtain a fraudulent TLS certificate
for it. As mentioned in Section I, despite many advances such
hijack is a significant threat. Note that even if DNS could not

2



be directly hijacked for fraudulent TLS certificate issuance,
BGP hijack has been shown to be effective [7].

TLS certificates can also be issued under Extended Val-
idation (EV). This requires more extensive checks of legal
ownership and control over a domain. Note, however, that
even if a domain has an EV certificate, an adversary capable
of obtaining a DV certificate by any of the above means can
still hijack TLS connections to that domain for those clients it
can direct to the wrong destination. Also, because it currently
remains relatively easy for an adversary to manipulate the
checks a CA performs for issuance of a DV certificate, a CA
that directly issues a fraudulent certificate may have plausible
deniability that this was the result of external attack. We will
discuss in Section VII ways in which our approach can help
counter such deniability.

B. System Properties

Our systems support the four following properties.
Authority-independent Authentication: No CA can usurp
from a site’s owner control over that site’s authentication.
Dirt Simple Trust: Learning a site address (domain name)
from a trusted party is itself sufficient to assure a user of
her ability to securely connect to a familiar or recognizable
destination.
Synergistic Backwards Compatibility: Existing Internet and
Web protocols operate normally (absent attacks), and without
the need for duplicated versions of content or links on sites.
Names are traditional domain names as governed by DNS.
Existing web security is supported and reinforced by the new
mechanisms and vice versa.
Network Embedded Security: The World Wide Web is a
graph comprised of nodes (URLs) and arcs between them
(hyperlinks). Most existing security mechanisms are externally
tacked-on to the nodes or arcs of the Web. SAT domains are
Web nodes themselves, thus weaving security directly into the
fabric of the Web.

These are glosses intended to convey the gist of each
property. Thus, e.g., a simplification in glossing ’dirt simple
trust’ was to run together discovery and validation of an
address by saying “learning an address” from a trusted party.
But addresses are often discovered from a search result, text
message, etc. that is “clicked on” rather than learned directly
from a trusted party. For site addresses not learned from
a relevantly trusted party, the trusted party would only be
validating a site address discovered elsewhere. Nonetheless,
the SAT address by itself is sufficient for a trusted party to
validate it as correct: the meaningful name it contains and the
contained information needed to authenticate connection to it
are correctly associated with each other.

Also, SAT domains support but do not provide these prop-
erties by themselves. They rely on additional assumptions we
will discuss below. For example, dirt simple trust relies on
client software capable of checking properties of connections
to such domain names. And, authority-independent authentica-
tion does not imply that authentication is established without

any role for CAs. Rather, CAs can support site owner control
over authentication, but they are unable to subjugate it.

Self-authenticating domain names obviously have advan-
tages: As Vint Cerf recently observed, “Suppose, in lieu of
domain names, one used a public key as an identifier and
associated this with an Internet Protocol (IP) address. If one
looked up the IP address in a registry of public key identifiers,
one could then challenge the device at that IP address to show
it still has the associated private key using a challenge/response
protocol” [8]. And the advantages of self-authentication have
long been recognized as useful more broadly than just for
Internet destinations. PolicyMaker, the first trust management
system, “binds public keys to predicates that describe the
actions that they are trusted to sign for, rather than to the names
of keyholders as in current systems” [9]. Though “current
systems” was as of 1996, the previous quote from Cerf shows
that providing this kind of trust for access to Internet sites
remains a hope today.

C. Related Work

Our discussion of existing related work focuses on whether
it does or does not provide our four security properties
for websites: authority-independent authentication, dirt simple
trust, backwards compatibility, and network embedded secu-
rity. This is summarized in Table I.

1) Traditional domain names and certificates: As a
baseline we consider a traditional domain name (e.g.,
example.com) with a valid TLS certificate from a CA. Ob-
viously the TLS certificate is an example of authentication
dependent on an authority. The domain name is merely human
meaningful, lacking anything that would enable a user to
confirm secure connection to the site, which makes dirt simple
trust impossible. As this HTTPS-protected traditional domain
is our baseline, it is by definition backwards compatible with
itself. Finally, traditional domain names do not embed security
into the structure of the Web at either the nodes (URLs) or arcs
between them. While HTTPS and TLS are majorly beneficial
and important to secure network communication, they remain
external to the fabric of the Web itself.

2) Tor Onion Services: We emphasized in Section I the
value of bringing self-authentication to traditional domain
names. Another important contribution of our approach, how-
ever, is that it brings traditional domain names to self-
authentication. There is a widely deployed system for self-
authenticated site access, namely Tor’s .onion addresses [10].
As vetted software used by millions, adopting the format of
.onion addresses within our SAT domains and using their
server code for corresponding signature generation was more
prudent than creating our own.

Onion services have been available via the Tor network
since 2004. They have the .onion top level domain, which
was reserved in an IETF standard in 2015 [11]. The current
version of onion addresses are 56 characters long, comprising
of a base-32 encoding of an ed25519 key, a checksum,
and a version number followed by “.onion” [12]. As an
example, the Qubes secure operating system’s homepage is

3



Authority Independent Dirt Simple Trust Backwards Compatible Embedded Security

Traditional Domain N N - N
.onion Address Y N Y* Y

YURL Y N* N Y
.onion Alt-Svc N N Y N

DNSSEC/DANE N N N* N
HSTS n/a n/a Y N
HPKP Y* N Y N

Cert Transparency N N Y N*
SAT Domain Y Y Y Y

TABLE I
SYSTEM PROPERTY GOALS PROVIDED SAT DOMAINS AND RELATED WORK. (AN ASTERISK IMPLIES A MORE SUBTLE ANSWER, DISCUSSED IN THE TEXT.)

sik5nlgfc5qylnnsr57qrbm64zbdx6t4lreyhpon3ychmxmie
m7tioad.onion. Tor client software automatically verifies
whether a connection to this address is signed by someone
possessing the private key associated with the public key en-
coded in it. Onion addresses are thus self-authenticating, which
implies authority-independence. But, authority-independent
authentication is for the onion address, which is unlikely to
be meaningful to users. As such, by themselves they can not
provide dirt simple trust. For example, receiving the above
onion address from a trusted party via a trusted channel
and connecting to it would not authenticate for the user
a connection to Qubes unless the user already associated
that address with Qubes. How would the user know which
meaningful entity she is being given the address for? The
channel would have to separately convey that the onion address
is bound to Qubes rather than that being implicit in the address.

We have previously described and implemented binding
.onion addresses with traditional domain names via GPG
signatures [13]. Though this binding could provide authority
independence for meaningful, traditional domain names, it
could not provide dirt simple trust: in that system, addresses by
themselves are either a meaningful name or a name including
the means to its own authentication, but not both at once. We
later suggested integrating these using the approach described
in the present paper [10].

Looking up Tor onion service directory information and
communicating with Tor onion services both have some nice
security properties, but they are not our focus in this paper,
and the reader need not know anything about these topics to
understand our work.

A major limitation on the protection onion services provide
is that they are only reachable by clients running Tor. (Proxies
such as Tor2web [14] can allow access to onionsites via
browsers that do not direct connections over Tor. This provides
broader access, but at the expense of security. For example,
the user must completely trust the proxy for address lookup
and address self-authentication checks and thus has virtually
no authentication assurance when using them to connect to
onionsites. In addition, such proxies are a simple centralized

point for tracking users’ onionsite activities.)
Besides not providing dirt simple trust or being reachable

by non-Tor clients, only EV certificates are currently obtain-
able from CAs for onion addresses. As already noted, EV
certificates require a much more extensive check of association
between the party to whom the certificate is issued and the
domain name for which it is issued. This is generally expensive
and time consuming enough that it is mainly pursued by
fairly large or established enterprises, such as corporations or
sites with a need to offer content in censored environments.
Facebook, Cloudflare, Duckduckgo, Buzzfeed, and ProtonMail
are some of the entities with TLS certificates for onion
addresses. DV certificates, which are available quickly and
without cost from Let’s Encrypt [15], cannot be issued for
onion addresses.

Because onion addresses appear meaningless to humans, an
adversary could set up an onion service and try to trick users
into thinking that connections to his website are, for example,
to the Qubes OS website. And if the adversary brute forces
an address that matches the first and last several characters of
a real address, it is all the more likely to escape user notice.
We were able to brute force 6 characters in 3 minutes on a
single 56 core machine running an early vanity onion service
generator [16]. A recent survey of Tor users showed that about
half of respondents verify 9 characters or less to check if an
onion address is what they expect [17]. An adversary with
a better-optimized vanity onion service generator or more
computing power can easily deceive these users. Previous
versions of Tor onion addresses were sixteen characters long.
The same survey found over half of respondents resort to
memorizing their favorite 16-character onion addresses, a feat
we cannot expect of users with Tor’s current 56-character
onion addresses.

3) YURLs: While .onion addresses are global and secure,
they are not human meaningful. They are also limited in
compatibility to those few million users accessing the Web via
Tor. In contrast to meaningless .onion addresses, the YURL
approach to self-authenticating Internet sites is to provide
“trust management for humans” [18]. YURLs provide secure,

4



human meaningful names, but they do this by abandoning
globally meaningful names. The name is whatever the user
locally chooses to associate with the public key. They are
authority independent and are clearly not backwards com-
patible. (Though never significantly deployed, YURLs were
intended to replace rather than synergize with traditional
domain names and associated security infrastructure.) Because
they only use locally meaningful names, they do not so much
fail to provide dirt simple trust as consciously eschew talking
about it. Nonetheless, inasmuch as YURLs do embed public
keys in pointers to resources, they do embed security into
Web structure. Unlike YURLs, SAT addresses support both
decentralized and centralized trust establishment for traditional
domain names and the ability to rely on either one or on the
strength that comes from appropriately combining the two.

4) Onion Services as Alternative Services: The HTTP
Alternative Services (alt-svc) IETF standard permits servers to
suggest to connecting clients an alternative network location
(and possibly protocol) to be used when connecting to the
origin server. “Alternative services do not replace or change
the origin for any given resource; in general, they are not
visible to the software ‘above’ the access mechanism. The
alternative service is essentially alternative routing information
that can also be used to reach the origin in the same way
that DNS CNAME or SRV records define routing information
at the name resolution level.” [19]. Unlike HSTS and HPKP,
which will be discussed presently, alt-svc settings are only
established via headers sent by the origin server: there is no
preload list, and clients must thus contact a server initially to
be rerouted to the alternative service. Also unlike HSTS and
HPKP, alternative services are intended to be optional. Clients
generally should follow an alt-svc header if possible, but are
not required to do so. As noted above, a user connecting
to https://foo.com/ and rerouted to an alternative service will
continue to see https://foo.com/ in the URL bar, and the TLS
protection is essentially the same. (Thus the alternative service
must have access to the same keys needed to authenticate a
connection to foo.com as the origin server.)

Recently, some prominent Internet destinations, notably
Facebook and Cloudflare, have begun using alt-svc headers
to route visitors who are coming over Tor to onion services.
A user connecting to, e.g., facebook.com via Tor Browser,
will be rerouted for subsequent connections to the .onion
address given in the alt-svc header, though this will essentially
still appear to be a connection to facebook.com. Subsequent
lookup should also be via Tor’s onion service directory system.
The initial connection, however, will be to Facebook’s server
as normally resolved by DNS for requests coming from the
network location of that initial connection’s Tor exit relay.

Alternative onion services have the potential to enhance
usability for Tor users, although by their nature there is
no simple way for a user to know if she is getting their
protections or not. Consequently, when used by themselves
they undermine the self-authentication that onion addresses
provide. Thus, though they combine onion addresses with
traditional domain names, they do so in a way that provides

neither authority independence, dirt simple trust, nor Web
embedded security. We will discuss other security aspects of
.onion alt services in Section VI.

5) DNSSEC and DANE: The IETF’s Domain Name System
Security Extensions (DNSSEC) is a suite of specifications that
add authentication and data integrity to DNS [20]. DNSSEC
has achieved somewhat significant adoption: the root zone
adopted it in the summer of 2010 [21] and about 8% of clients
were using DNSSEC to some extent as of 2013 thanks pri-
marily to Google’s public DNS resolver [22]. Because the root
zone and many TLDs support DNSSEC, domain owners can
create proper chains of trust to the trusted root and disallow an
adversary from forging responses from authoritative servers in
the chain. DNSSEC protects name resolution no matter what
application layer protocol is in use. Users have no obvious
way of knowing whether their DNS lookups are protected by
DNSSEC or not.

DANE [23] is a protocol that uses DNSSEC to give domain
name owners control over which TLS certificates are allowed
to be presented to users visiting their domains. They can
specify that clients should only trust a specific certificate,
certificates issued by a specific CA, or certificates passing
validation under a specific trust anchor.

DNSSEC and DANE do not provide authority-independent
authentication as they generally depend on TLS keys and CAs
for authentication. They potentially provide something in the
direction of dirt simple trust for users with a properly work-
ing DNSSEC-validating resolver and who know the domain
they’re resolving should be protected by DNSSEC. But, as
noted above, there is currently no way for users to know this.
In theory, clients who know nothing about DNSSEC/DANE
can simply ignore these special DNS records, so the protocols
are potentially backwards compatible. In practice, significant
fractions of clients were found unable to resolve addresses at
all for domains with DNSSEC deployed in a 2013 study [24].
Incentives and deployment issues continue to plague DNSSEC,
with only three percent of domains worldwide adopting [25].
DNSSEC and DANE do not embed security into the Web, but
for sites adopting them and clients properly configured to use
them they do counter the DNS-based attacks that an adversary
might use for carrying out the attacks we address.

6) HSTS and HPKP: HTTP Strict Transport Security
(HSTS) is built into all major browsers, is widely adopted
by site owners large and small, and its adoption continues to
expand. In addition to a preload list shipped with browsers,
dynamic HSTS enables web servers to send to clients a special
HTTP header indicating that the clients should continue to
use HTTPS for all requests to the current domain for a given
length of time. If a client is unable to establish a secure HTTPS
connection to the server, the browser will fail hard and safe,
disallowing the user from visiting the site until the problem is
resolved. HSTS provides significant security gains for users;
however, it gives third parties the ability to track and censor
users via the pushing of header state that is not blockable by
any current browsers and is harder to detect or remove than
cookies [26].

5



HTTP Public Key Pinning (HPKP) allows web servers to
send a similar HTTP header to clients, instructing them to only
trust certain TLS certificates when visiting the server. This
gives site owners control over secure site access not subject
to CA hijack once a client has visited a site and pinned the
correct key(s) for it. Dynamic HSTS and HPKP both require
trust on first use (TOFU).

Once HPKP pins the correct key, this establishes authority-
independent authentication of the website, even though the
public key is from a TLS certificate likely signed by a
CA. HPKP does not provide dirt simple trust because the
user requires additional information (the correct key). It is
backwards compatible because client software ignorant of
HPKP headers will just ignore them. While HPKP does enable
TOFU for TLS certificates, this is merely tacking on security
as opposed to embedding it into the Web.

7) Certificate Transparency: Certificate Transparency (CT)
is an initiative spearheaded by Google that supports auditing
and monitoring the issuance of certificates [27]. CT provides
publicly auditable append-only logs (cryptographically veri-
fiable lists of issued certificates) operated by entities such
as Google and DigiCert, as well as monitors that check log
servers for suspiciously issued certificates, and auditors embe-
ded in client software such as browsers. Major organizations
and companies can be expected to set up monitors due to their
self-interest in keeping track of what certificates exist for their
domains, to detect issuance of malicious certificates, and to
report incidents or take appropriate actions.

Though CT does not directly support authority indepen-
dence, its record of issued certificates potentially provides in-
centive against CAs intentionally issuing fraudulent certificates
to avoid the consequences of such misbehavior. Although, as
noted above, for DV certificate issuance the plausibility of
hijacked validation of domain control remains real enough that
malicious CA behavior is neither necessary nor easily proved
in general even if fraudulent certificates are discovered. CT
does not support dirt simple trust. It also does not directly
provide Web embedded security as we have defined it (security
built into URLs or links). But, it does build logging into
certificate issuance. In a future where CAs require (automated)
proof of ownership of the private key corresponding to the self-
authenticating key in a SAT domain, DV cert issuance becomes
harder to hijack. In the case of fraudulent certificates for a
particular SAT domain, CT logs would then provide evidence
of CA misbehavior that is no longer easy to plausibly deny.

CT is backwards compatible with existing infrastructure. As
of April 2018, Chrome acts as a simple auditor, requiring that
TLS certificates are accompanied by signed commitmentments
from CT logs to include the certificate [28]. In October
2018, Safari similarly began requiring for all TLS connections
such commitments from CT logs [29]. Mozilla “supports the
objective”, but has no concrete plans to make Firefox require
commitment to certificate presence in CT logs at this time [30].

III. SAT DOMAIN DESIGN

A self-authenticating domain name is one that incorporates
into itself the information needed to authenticate a connec-
tion to the domain. A self-authenticating traditional (SAT)
domain name therefore starts as a traditional domain such
as example.com that also somehow binds to itself everything
needed for self-authentication.

A. Strawman Design

A SAT domain needs a way to bind a self-authenticating
identity (i.e., a key that a client expects from the URL to which
it is connecting and that a website can prove it possesses) to
its traditional cryptographic identity (created by the issuance
of a TLS certificate by some trusted certificate authority). As
the website already possesses a TLS key, it might make sense
to use it for self-authentication too.

Suppose domain example.com has a TLS certificate with
fingerprint ABCDEF . When referencing resources on their
domain, the site owner could provide hyperlinks to ABCDEF.
cert.example.com and instruct clients to verify the certificate
they are presented with is ABCDEF . Browsers could be
taught to recognize domains in this form as special, and
they could require communication with these domains to be
protected by a TLS connection with a valid TLS certificate
with the fingerprint encoded in the name. This scheme would
successfully bring self-authentication to traditional domain
names and would be a valid SAT domain design.

• Notwithstanding the fact that an authority issued the
TLS certificate to the site owner in the first place, no
authority can prevent the site owner from using it for
self-authentication.

• Names in this form enable dirt simple trust, as learning
the name over a secure channel from a trusted party is
enough to ensure secure connection to the recognizable
destination example.com.

• Backwards compatibility is maintained: client software
ignorant of these additional checks it should be perform-
ing will simply not perform the checks and be no more
or less secure than before.

• The names themselves bootstrap properties for a secure
connection, which weaves security directly into the Web.

This design is too inflexible, however. Site owners may
want to use a variety of TLS certificates because, for example,
they have data centers all over the world for load balancing
purposes and want to limit the damage of accidentally leaking
any one TLS private key. With this design they would no
longer be able to have a single canonical name for their
website, consequently making linking to their own site while
maintaining load balancing difficult, if not impossible.

Furthermore, site owners would no longer be able to rotate
their TLS certificates without invalidating links to their website
all over the Web. We expect this to be unacceptable for
certificates with lifetimes measured in years, but especially
so for the 90-day certificates from the increasingly popular
CA Let’s Encrypt.

6



For these reasons, an identity key not directly and irrevoca-
bly tied to a specific TLS certificate is desired.

B. Design

Our SAT domain design has site owners generate an
ed25519 key, encode its public part, and prepend it to
their traditional domain. To support future integration with
Tor onion services as well as take advantage of existing
cryptographic software, we use Tor’s onion addresses, and
encode their ed25519 public key in the same way as Tor.
As a working example, we have set up a website for the
domain satis.system33.pw, and created an onion address for
it. Similar to the strawman design, the DNS-resolvable do-
main name for this site simply prepends the onion address
as a subdomain, namely, hllvtjcjomneltczwespyle2ihuaq5hy
pqaavn3is6a7t2dojuaa6rydonion.satis.system33.pw. This is the
self-authenticating traditional (SAT) domain name associated
with the base domain satis.system33.pw.

Since this design involves two different keys, the keys need
to both bind themselves with the other. To bind the TLS key
towards the ed25519 SAT domain key, we can simply include
both the SAT domain and its traditional domain part in the TLS
certificate. The standard TLS extension Subject Alternative
Name (SAN) allows more than one domain name to be listed
in a certificate.

To bind the ed25519 SAT domain key towards the TLS key,
the site owner periodically signs messages indicating it wants
to be bound to a specific TLS certificate and configures their
Web server to include this message as a new HTTP header
in response to all client requests. This completes the binding
of a self-authenticating identity to a traditional identity with
fewer downsides than the strawman design:

• No authority is involved in the process of the Web server
authenticating itself to clients using the ed25519 encoded
in its SAT domain.

• SAT domain names securely learned from a trusted party
enable dirt simple trust.

• Browsers unaware of SAT domain protections will con-
nect as normal and simply ignore the additional HTTP
header, leaving users to be no more or less secure.

• SAT domain names embed security directly into the Web
instead of simply tacking it on.

Site owners are free to use as many different TLS certificates
as they wish as long as they also provide a signed message
from their ed25519 key indicating the client should expect
the given TLS certificate. Likewise they may rotate their TLS
certificate as frequently as desired without ever having to
change the hyperlinks to their site scattered all over the Web.

Our SAT domain design may seem similar to HTTP Public
Key Pinning (HPKP) [31], as both effectively pin a specific
public key. However, HPKP requires trust on first use and
raises tracking and censorship concerns that SAT domains
avoid [32]. Onion service protocols also allow identity private
keys to be kept offline and only used to effectively delegate
to signing keys, which makes them less vulnerable to theft or
disclosure [12], though this is not yet implemented or deployed

at time of writing. And, as noted above, HPKP supports neither
dirt simple trust nor Web embedded security.

IV. IMPLEMENTATION

To implement our SAT domain design, only simple Web
server configuration changes and software to generate ed25519
signatures are required on the server side, and the client
side is entirely implemented in a Firefox WebExtension. We
start this section with describing the necessary server side
changes, proceed to describing the client browser extension,
and finish with a security relaxation we optionally allow in
our implementation in order to more easily facilitate adoption
of SAT domains.

A. Server Implementation

We made simple additions to the Tor daemon software so
that it generates the required signatures with the ed25519 key
associated with an onion service. Tor makes a signature over
the following data.

• A magic string
• A timestamp indicating the middle of a signature valid-

ity window
• Width of the signature validity window, in seconds
• A nonce
• The SAT domain name
• The fingerprint of the TLS certificate with which the

domain should be associated.
Tor appends its signature to the end of the above data and

writes everything to a file. These files are about 250 bytes in
size (depending on the length of the SAT domain name). Tor
regenerates this file periodically on an interval shorter than
the signature validity period. Our implementation defaults to
having a validity window of 7 days and to regenerating this
file every 3 days, though these times are configurable.

A script runs every few hours that reads the file Tor creates,
encodes the contents with base64, and configures the Web
server to add the base64-encoded data as an HTTP header in
its responses. Browsers ignore the header unless they have our
extension installed. Popular Web servers such as Nginx and
Apache support the simple configuration option necessary.

Because generating an ed25519 signature is relatively
cheap, only needs to be done once every few days, and is
performed on less than a kilobyte of data, the additional server-
side cryptographic activity is negligible and not worth evaluat-
ing. We also expect the overhead from periodic reading of the
signature file and updating of the Web server configuration to
be negligible and on the order of regular server maintenance
tasks, such as log rotation, thus not worth evaluating.

B. Client Implementation

We implemented a WebExtension that runs in Firefox 63
and newer. However, ultimately the authentication it provides
is probably best incorporated directly in the browser rather
than in an extension.

First of all, the extension does nothing to change normal
browser TLS certificate checks. If the certificate is not trusted

7



by the browser for any reason, the browser will halt the
connection as usual. Only if the browser trusts the certificate
does the connection proceed. At this point our extension
performs the following checks.

• Is the user visiting a domain name formatted as a self-
authenticating name (does it start with a string formatted
as an onion address)? If not, it stops and returns control
to the browser.
• Does the TLS certificate indicate an intended connection
between the base domain name and the SAT domain
name? Using our running example, it checks if both satis.
system33.pw and hllvtjcjomneltczwespyle2ihuaq5hypqa
avn3is6a7t2dojuaa6rydonion.satis.system33.pw are listed
in the Subject or SAN fields of the certificate.
• Is there an HTTP header containing data signed by the
ed25519 key encoded in the domain?
• Is the current time within the signature validity window
from the signed data, is the domain the client is visiting
the same as the one in the signed data, and is the
fingerprint of the server’s TLS certificate the same as the
fingerprint in the signed data?

If all checks pass, the connection completes as usual for
a secure TLS connection that is now also self-authenticated.
Other than the first one, all checks fail hard and safe, producing
an error message such as in Figure 1. These checks are fast
enough to be imperceptible.

Fig. 1. SAT header signature failure

C. Deployment Rollout Trade-off

For a domain to offer a SAT version of itself there are
three primary requirements: it must configure its Web server
to respond to requests to the SAT domain, it must obtain and
offer a TLS certificate containing both the SAT domain and its
base domain, and it must support the production and offering
of onion-cert credentials—signed HTTP headers in which the
onion address effectively authenticates the TLS certificate.

An institution may find that obtaining a new TLS certificate
is the hardest requirement for setting up a testbed deployment
of a SAT domain for their website, but they may already
have a certificate containing an appropriate wildcard. We
thus relax the requirement for including the SAT domain in
the certificate in order to facilitate initial adoption of SAT
websites. As normal, if the wildcard *.example.com is present
in the TLS certificate, the browser allows a TLS connection to
[onion-address].example.com. Our extension will then perform
all the same checks as above, except for requiring the inclusion
of the SAT domain in the TLS certificate.

The relaxation gives up any public logging or validation
of that binding by Certificate Transparency [33] or similar
mechanisms. It also means that, under the relaxed checks,
anyone able to fraudulently obtain a certificate for *.foo.com
can set up and authenticate a SAT domain for the base foo.com
using any onion address for which they know the private
key. This won’t fool anyone who already has the correct
SAT domain for foo.com and is checking for it, but it is a
valid concern. We will discuss mitigations in the next section.
Still, given the advantage of incorporation into Certificate
Transparency logs and for greater security in other respects, we
intend this relaxation to be a temporary trade-off to be phased
out as adoption becomes more widespread and standard.

V. DIRT SIMPLE TRUST

Recall the example with which we started: Alice knows she
is a likely victim of certificate hijack when connecting to all
or some destinations. Nonetheless, if she already knows the
SAT domain of her destination website, then she is guaranteed
protection from the adversary described in Section II-A. An
adversary that performs a DNS or BGP hijack against her and
that obtains a TLS certificate that her browser would trust
will still lack the ed25519 identity key needed for the SAT
domain’s self-authentication header, causing Alice’s browser
to fail safe and refuse the connection. But if she doesn’t
already know her destination’s SAT domain, she needs a secure
way to obtain it. Alternatively, if she has found a SAT domain
for her intended destination via a search query or visit to an
untrusted Web page, she needs a secure way to establish that
it is the proper SAT domain for her destination.

If she knows and trusts Tom, who controls foo.com, and
she has a way to receive authenticated messages from him,
then he can give her the SAT address for foo.com over that
channel. If she keeps track of this SAT domain somehow (as a
toy example, in a bookmark), then her connections to it cannot
be hijacked even if her WebExtension is operating under the
rollout relaxation and he only has a wildcard certificate. He
might give this SAT address to her on a business card, in a
GPG signed message, in a link sent over a secure messaging
application like Signal, etc. This is already a usable security
win for many use cases. People at significant risk may not
readily be in a position to learn about and properly employ the
security they need, or they may simply slip up operationally.
Requiring only a way to receive an address (and having
properly functioning software) is both easier and less prone

8



to error than, e.g., the Qubes .onion address scenario from the
Section II-C2.

This baseline example of dirt simple trust has obvious
scalability and usability concerns. Most notably, it requires
Alice to set up secure communication channels with the owner
of every website she intends to visit, which seems tautological
(why not simply use those secure channels to actually visit the
website?). We now describe ways to make dirt simple trust
more usable and scalable while maintaining the fundamental
element: a trusted party conveying or validating in one address
a meaningful name indicating a destination and sufficient
information to authenticate connection to it. Journalists and
individuals who work with technologically-unsophisticated
users significantly at risk from site-authentication hijack have
told us this would be a valuable advantage in protecting such
users and their communications.

As a first step to addressing these, imagine Alice also trusts
Tom to properly validate the binding of other SAT domains to
their base domains: Tom communicates over an authenticated
channel with people he knows to control those base domains,
verifies possession of appropriate keys, etc. He attests to such
binding, and does so over a channel Alice trusts to authenticate
Tom. These attestations should only be about such binding.
If Tom is attesting about, say, cnn.com, he should not be
implying anything about the accuracy of their reporting or
quality of their editorial policy. To make clear that we are
only describing attestation about binding of a SAT domain
and nothing else, we will refer to it henceforth as sattestation.

For the original example of Alice trying to reach news
and social media domains, Tom can provide Alice the SAT
domain for some news reliability and safety organization, for
example, Freedom of the Press Foundation or the Berkman
Klein Center for Internet & Society. If Freedom of the Press
Foundation’s SAT domain sattests for the SAT domains of var-
ious news sites, Alice can use their sattestation to be assured
her connections to CNN, Yahoo News, Facebook, Twitter,
etc. are free from hijack—provided Alice trusts the sattesting
organization. All that needs to be communicated to Alice to
establish this protection is domain names: first the SAT domain
of the sattesting organization, and upon successfully visiting
that sattestor’s SAT domain, the SAT domains for which it
sattests. Note the dirt-simple requirement of just an address
makes things simple and less error prone for the sattestor—as
well as for the user and client. We have implemented SAT-
domain-based sattestation in our WebExtension.

We emphasize that our sattestation lists do not automatically
provide transitive trust à la PGP. While a PGP-esque system
would instruct Alice to trust a SAT domain for CNN if, e.g.,
its mean shortest sattestation distance from her SAT domain is
low enough, sattestation lists only provide “one layer” of trust.
Tom’s sattestation of the Freedom of the Press Foundation’s
SAT address does not by itself give Alice grounds to trust
the SAT addresses on that organization’s sattestation list. To
correctly trust those SAT addresses, Alice would either have
to independently trust the Freedom of the Press Foundation’s
ability and integrity to do sattestations, or she would have to

separately trust Tom if he also asserts their trustworthiness in
doing sattestations. And if she has established that trust, it does
not provide grounds to further trust sattestations by any SAT
domain on Freedom of the Press Foundation’s sattestation list.

A. Sattestation Lists Implementation

Fig. 2. List of trusted SAT domain lists

As shown in Figure 2, our WebExtension records sattesta-
tion lists that the user comes across while browsing the Web,
and provides a checkbox for her to indicate which sattestation
lists she trusts. (They default to untrusted.) Elsewhere there
is a settings checkbox that only permits connections to SAT
domains if they are sattested by a trusted source. If Alice
checks this box and has at least one SAT list marked as trusted,
then even in the case that an adversary obtained a fraudulent
certificate for a SAT domain of, e.g., cnn.com, her browser
would not permit connection to that domain and would warn
her accordingly. Note that even without requiring sattestation,
this fraudulent certificate would have to be for a different SAT
domain than the one CNN themselves set up; otherwise her
browser would detect the failure to provide an appropriate
signature header.

The sattestation list component of our WebExtension is
also automated: it will periodically update any known list.
The last simplifying usability element of dirt simple trust and
sattestation that we have implemented to date is rewrite rules in
the manner of HTTPS Everywhere [5]. A user can check a box
stating that if the given sattestation list contains a base domain
that she visits, then the WebExtension will rewrite the URL to
contain the SAT domain instead of the base domain. A user
can also provide her own rewrite rule for a SAT domain, which
can be useful if, e.g., she learns of it via a Signal message from
an appropriately trusted friend rather than from a sattestation
list.

9



B. Sattestation Flexibility
A sattestation site trusted by Alice need not be a publicly

reputed organization; the SAT domain she is told about by a
trusted friend might simply be his own sattestation site. At the
most extreme, Alice might trust only herself to sattest domains,
thus the only SAT domains that she will count as sattested are
those for which she personally validated with a party she trusts
about control of the base domain. This underscores a valuable
design property of sattestation: the same mechanism and user
interface works across a range of use cases from accessing
a small number of personally familiar domains to a large set
of domains all over the Internet discovered by happenstance.
Here are some examples.

• Alice could choose to only trust her Linux User Group’s
sattestation list of members’ blogs and code repositories.

• Alice may use many Microsoft products, and sub-
scribe to Microsoft’s sattestation list for microsoft.com,
live.com, office.com, office.net, microsoftonline.com, etc.
Microsoft’s software could be written to trust the same
list in order to more securely download updates.

• A U.S. Government agency such as the Department of
Homeland Security or the General Services Administra-
tion could produce a sattestation list for all .gov and
.mil domains, which would obviate the real DNS attack
mentioned in Section I.

• Companies may create a list for their domains to help
protect their employees and contractors against acciden-
tally leaking login credentials or sensitive information.

• A web-based VPN could be hosted at a SAT domain to
make it hijack-resistent. Man in the Middle attacks have
occurred against domains not intended to be reachable—
much less accessed—by the public [34]. Making SAT
versions of these domains can provide defense in depth
against attacks on these internal namespaces.

Note that Microsoft could instead set up its own CA. While
that is possible for entities the size of Microsoft or the U.S.
Government, it is not for smaller entities. And running one’s
own CA by itself does not provide the same usability or
protections. Many browsers do not by default trust certificates
issued by the U.S. Government for example. And owning
a CA will not prevent other CAs from issuing certificates
for Microsoft’s domains. Microsoft could pin certificates to
their own or an existing CA. But, HPKP has already been
deprecated in popular browsers, it would not protect first-time
visitors, and pinning provides neither dirt simple trust nor Web
embedded security.

C. List Performance
As SAT domain adoption grows, people are likely to adopt

some sort of dirt simple trust scheme that requires local state,
such as the one we implemented and described in Section V-A.
As these lists of SAT domains grow in size, their impact
on browser performance and page load time stops being
negligible.

Table II shows the worst case performance impact a user
can expect from our toy proof-of-concept WebExtension with

Num. SAT lists Each list’s length

1 10 100 1,000 10,000

1 0.00 0.02 0.06 0.48 4.14
10 0.02 0.04 0.32 3.96 41.8

100 0.12 0.42 4.04 41.3 -
1,000 1.96 6.30 50.2 - -

10,000 24.4 75.1 - - -

TABLE II
WORST CASE TIME ADDED TO PAGE LOADING TIME (MS)

aggregate list lengths up to 100,000 entries, assuming she
either requires the SAT domains she visits to be sattested or
she enables base-into-SAT domain rewriting (enabling both
doubles the worst case). By repeatedly performing a search
over all the configured sattestation lists for a domain that none
of them contain—thereby forcing the code to check every entry
of every list—we simulate the worst case when a user requires
a domain to be sattested in order to allow herself to visit it
or when she has enabled domain rewriting. These tests were
performed on a 2015 MacBook Pro running macOS 10.14.3.

Even our naive unoptimized code can check 10,000 aggre-
gate list items in less than 10 milliseconds in most cases, a
duration still imperceptible to humans and an aggregate list
size large enough to give programmers time to implement
optimizations before the performance impact is too great.
Straightforward caching optimizations such as memoization
would yield significant savings for non-artificial work loads,
and moving our WebExtension’s functionality into the browser
directly would not only allow it to be written in a much faster
language such as C, C++, or Rust, but would also remove
an artificial memory allocation limit placed on WebExtensions
allowing for even larger lists and more memory-hungry storage
solutions that enable constant-time lookup (e.g. a pair of hash
tables, one for each direction of the SAT domain/traditional
domain mapping).

VI. THE ONION ALTERNATIVE

SAT domain names combine the recognizability of reg-
istered domain names with the self-authentication of onion
addresses, and as we have previously described, the user can
choose an option to permit entering a base domain name (e.g.,
foo.com) in the URL bar of her browser and have this rewritten
to a full SAT domain.

There is an at least superficially similar system currently
deployed and in use that, given a regular domain name
in the URL bar, will reroute a requested connection to an
HTTP Alternative Service [19] at an .onion address. Given the
apparent similarity, it is worth exploring these onion alternative
services. Like SAT domains, they would seem to connect
traditional domain names with self-authentication. Unlike SAT
domains, they are intended only for use with Tor Browser. We
will discuss other important differences below.

Recall from Section II-C4 that the alt-svc standard permits
servers to suggest to connecting clients an alternative network
location to be used when connecting to the origin server.
Clients generally should follow an alt-svc header if possible,

10



but are not required to do so, and a user rerouted to an
alternative service will continue to see the original URL in
the URL bar. The alternative service uses the same TLS keys
needed to authenticate a connection to the origin server.

A. Onion Or Not, Here I Come

Starting in September 2018, Tor users visiting Cloudflare-
backed websites (hereafter collectively simplified to
cloudflare.com) could be rerouted via alt-svc header to
one of ten .onion addresses cflare2n[...].onion [35], which
would seem to offer the protection of self-authenticating
addresses. And since the URL leading to these alt-service
connections and displayed in the browser URL bar would
simply be cloudflare.com (or the basic domain that cloudflare
is backing), the user sees such connections to these self-
authenticating domains as to a recognizable, traditional
domain name. Further, since the TLS certificate supporting
the authentication is for the displayed URL, such alt-service
connections can use a DV certificate. Such .onion alternative
services thus seem to provide the same properties as SAT
domains. There are important differences, however, besides
the obvous one of only being reachable by Tor Browser
clients. To understand those other differences, it will be
necessary to understand a bit more about onion alternative
services in particular.

After an initial connection to cloudflare.com, further com-
munication with that server should be re-routed to a .onion
domain given in the alt-svc header; however, the RFC allows
the client to choose to continue connecting to the origin
server [19]. The user will always keep seeing cloudflare.com in
the URL bar, and there is no simple way for them to determine
if re-routing took place short of interaction with command
line tools that indicate the state of Tor connections. An alt-
svc header has a maximum age parameter that defaults to 24
hours. So, assuming her browser chooses to use the onion alt
service, the user receives for that site and that day the routing
and lookup protections Tor provides to onion services; but
again, she has no usable way to verify this.

Inability to tell if a particular connection is via onion
service protocols and inability to tell which onion alternative
service is in use undermines onion service self-authentication.
Onion addresses may not be human meaningful, but they are
at least human verifiable. As long as the user can see the
onion address, she can verify it’s the one she is connecting
to (alternatively, application software can trivially validate
the match). And as long as she has successfully loaded
content from it, she knows she is communicating with the
correct server with no Men in the Middle. As an alternative
service, neither the user nor even “the application that is using
HTTP” [19] can verify this anymore: the user cannot tell if an
adversary has hijacked her connection to cloudflare.com and
given her a bogus .onion alt-svc header.

What’s worse is that the adversary may give each user he
attacks a different bogus .onion alt-svc header, allowing him
to recognize, track, and censor individuals. “HSTS Supports
Targeted Surveillance” describes both first-party and third-

party surveillance and censorship of users via HSTS header
state [26]. The same attacks can be conducted using alternative
services rather than HSTS state. In fact they are easier to
encode since a single .onion alt-svc header can encode the
Web behavior history of previous alt services visited, without
the need for multiple redirects.

RFC 7838 explicitly acknowledges the tracking potential of
alternative services, although not the possibility of censorship.
Nor does it discuss the prospect of another means to do cross-
site tracking by advertisers, CDNs, etc., or of encoding the
history of visit behavior in the offered alt services themselves
and possibly using this to selectively offer content. Fortunately,
because of Tor Browser’s first-party isolation protections,
third-party versions of these attacks are not possible via onion
alt services. Nonetheless, onion alt services make first-party
tracking and censorship attacks harder to detect: for example,
after the initial obtaining of a TLS certificate, no DNS or BGP
hijack is needed for clients to be routed to the wrong location.

Our purpose in describing onion alternative services was
to describe a protocol currently in use that, at first glance,
might appear to accomplish the goals of SAT domains. We
thus say no more about these attacks. We will, however, end
this section with a description of how we have added a feature
to our WebExtension that counters the attacks we discovered.

B. Alty Alty Onion Free

Our WebExtension filters out all alt-svc headers before the
browser is allowed to learn of them and use them, taking
advantage of RFC 7838’s option of ignoring these headers.
As shown in Figure 3, our WebExtension remembers alt-
svc headers that it has seen, and it does not pass on alt-svc
headers unless the user indicates she wants to allow them.
For SAT domains and .onion domains listed as alternative
services, our extension performs the client checks described
in Section IV-B. If they fail, we indicate No in the “onion sig”
cell seen in Figure 3.

This is simply a proof-of-concept interface and functionality
that arose indirectly in our investigation of technologies related
to SAT domains. Though it may prove useful for alt services in
general, analysis and/or studies would be needed to determine
a worthwhile usable security approach.

VII. WEAVING SECURITY INTO THE WEB’S FUTURE

The Web has followed a rich, centuries-old information
technology tradition of developing something really cool that
becomes massively popular or important, and then—as its
general lack of any security becomes painfully clear—bolting
some onto the developed technology.

This is not simply laziness or perpetuation of shortsight-
edness; predicting even the concepts of security applicable
to a radically new technology and how it will be used and
embedded into the structure of daily life and business is noto-
riously problematic. And once an indication of these begins to
emerge, requiring whole-cloth adoption of “better” alternatives
is generally as unrealistic as is preserving the status quo. Still
the more we are able to integrate and improve security without

11



Fig. 3. Extension filters out alt-svc headers by default, and empowers user with choice to use them or not

doing too much violence to existing infrastructure, including
existing security infrastructure, the better.

Abstractly, the World Wide Web is a network comprised of
labeled nodes and directed arcs between them. Node labels are
URLs consisting in full or part of domain names, and domains
are the labels for which TLS certificates are issued. While
TLS certificates add security to the Web, they are attached
externally rather than internally as part of its structure. By
contrast, SAT domains are themselves unique labels for nodes
capable of having arcs directed to or from them. They thus
weave security directly into the structure of the Web.

Recall our example of a U.S. Government sattestation
domain for .gov and .mil SAT domains. If Alice is in a
communications environment where almost all news sources
(including Internet, print, broadcast, etc.), are censored, she
might need a specific trust root to reliably discover and validate
this sattestation domain. If, however, she has means to access
Internet sites from multiple diverse network locations (e.g., her
local ISP plus a few Tor exits in diverse locations), as well
as relatively unrestricted access to popular print and broadcast
media, then an announced U.S. Government SAT domain for
.gov and .mil sattestation that appears in several of these places
and goes unrefuted for a few days can be taken as genuine and
correct. And because the SAT domain is a label for a Web
node, her media sources are likely to reference it explicitly.
Unlike bolted-on security such as TLS, Alice does not have
to assume she’s receiving the sattestation domain’s security
benefits without interference: if she connects without errors to
its URL, she is receiving its security benefits.

As SAT domains become wider spread and the number
of links between them grows, the search engine rankings
of SAT domains will increase as well. As legitimate SAT
domains bubble to the top of search results, it will be harder
to hijack those clients that check SAT authentication even if
they have not yet determined the correct SAT domain for their
intended destination. This is gameable of course by using
Search Engine Optimization (SEO), but not easily without
detection by someone who would raise an alarm and report

it. The more that security is woven directly into the Web,
the higher the bar is for malicious parties to impersonate
prominent organizations, companies, etc. in search results.

There is currently no simple way to determine if a fraudulent
DV certificate was obtained from a misbehaving CA or if the
CA experienced DNS or BGP hijack when validating control
of the domain for which it issued the certificate. Honest CAs
wishing to enhance their reputation for reliability thus have
incentive to raise the bar for deceiving them—particularly
if it can be done relatively cheaply, quickly, and easily. If,
when issuing a DV cert that includes a SAT domain, the CA
checked for possession of the private onion key along with its
other usual checks, then it could not be tricked into issuing a
cert for any existing SAT domain by anyone not possessing
that key. TLS hijacks that are based on DNS or BGP hijack
(such as those announced in January 2019 [2]) would not be
possible. (It would still be possible to obtain a cert for the
same parent domain but with a different onion subdomain,
which presumably would not be on the same sattestation lists,
would not match URLs for existing links from other sites to
the original SAT domain, etc.)

The checks that should be performed to place a SAT address
on a sattestation list have some similarity to those required to
obtain an EV certificate. If possession of a private onion key
were incorporated into the checks performed for issuance of
an EV certificate, then the CA could also serve as sattestor
for any EV certificate it issued. This highjack resistance
for any browser trusting the CA for sattestation is a value
add that can be advertised, creating an incentive for CAs to
incorporate SAT addresses into the issuance of EV certificates,
not merely DV certificates. This also shows the flexibility of
the contextual trust provided by sattestation: it can scale down
to trust in a single person or scale up to purely structural
requirements of a CA issuing EV certs.

Not all impacts of SAT domains are simplifying. There
are complexities that arise from weaving security into the
Web’s structure in this way. Revocation or rotation of the keys
encoded in SAT domains requires updating links—changing

12



the structure of the Web. As we noted in Section III-B,
SAT domain keys could be kept offline exposing them to
less risk. Nonetheless, it will sometimes be necessary to
change them. The most reasonable way for this to interplay
with Web dynamics in the context of SAT domains is an
interesting research question that it would be better to more
fully understand before significant deployment.

On the other hand, Web dynamics are not only made more
complex by SAT domains. For example, abandoned domain
names and subdomain names—particularly those for financial
institutions—have been the target of adversaries hoping to
capitalize on the former domain owner’s reputation [36]. If the
abandoned domains were SAT domains, however, and if CAs
checked for control of the private onion key before issuing a
new cert, then it would be impossible to obtain a new cert for
any of these domains from an honest CA.

Also, note the mechanisms for authentication of SAT do-
mains contain a built-in means to revoke TLS keys. If the
onion-cert credential header does not sign the TLS certificate
for the TLS key being used, then the WebExtension will flag
this as an authentication failure. Further simplifying, there is
no need provide a separate revocation list or OCSP status
update for SAT domains—assuming the future validity of
the header (default of about three days) is narrow enough
or can be tuned appropriately. Besides reducing overhead of
communication with a CA (by clients or by servers in the
case of OCSP stapling), this means of TLS key revocation is
authority-independent.

In a future where SAT domains have become widespread,
there is a degree of protection provided even to those clients
that do not perform the checks associated with SAT domains.
As SAT domains become more commonly linked and sattested,
the fraction of users that can be tricked by gaming ranking
algorithms to get them to connect to doppelganger SAT
domains goes down. While such attacks may remain useful in
targeted situations, the incentives to perform them stemming
from their general level of success diminish. Similar to the case
above of protection for SAT-authentication-checking clients
lacking sattestation information, the level and structure of
protection from such “immunological” effects given different
network and user parameters is another interesting avenue for
research that arises from SAT domains.

Our extension does work in Tor Browser for purposes of
checking self-authentication and valid binding of SAT domain
with base domain. And as noted above, our onion subdomains
have the same encoding as Tor’s .onion addresses, and we
use the same signature generation code as they do. But SAT
address lookup in Tor Browser currently uses DNS, and Tor
connections to SAT domains use the same routing as for any
other destination on the Internet that is not a .onion domain. It
would be natural to add for Tor users the superior protections
of lookup and routing to .onion services by making the relevant
changes needed so that these apply to SAT domains as well.

The interfaces we have designed are merely proof-of-
concept. Best usability designs, best choice of parameter and
settings, etc. would benefit from usability analysis, as would

some of the dynamics issues raised above (though those are not
merely usability issues). We have not, for example, provided
a general policy framework or mechanism to decide for which
SAT domains a particular sattestation site should be trusted to
attest, much less how or by whom to enforce this. And, our
proof-of-concept sattestation interface is via lists retrieved by
clients from trusted entities, but it may be preferable to instead
(or in addition) manage this via credentials that a SAT domain
provides as a header.

Further, self-authentication of the address need not be in
the subdomain; it is possible to put it in the URL path.
This opens up many possibilities. For example, if CA/Browser
Forum guidelines are ever relaxed to permit .onion addresses
as SANs in DV certificates, then the WebExtension check
could apply to SAT addresses in URL paths or path queries
to make sure the registered domain name and .onion ad-
dress are both appropriately in the certificate. Subject to the
details, this would still support dirt simple trust and web-
embedded security without the need to change DNS records.
It might also remove a motivation to take advantage of the
rollout relaxation. (Note that at the time .onion addresses
were restriced to EV certificates, they were based on a much
earlier, cryptographically weaker onion address system than
the current one on which the SAT addresses and signatures
described above are based.)

SAT domains address significant, recently demonstrated
threats to Web security. And they do this in a way that
is incrementally deployable, available now, and synergizes
with existing Web infrastructure. But they also raise many
interesting research questions, which we welcome you to join
us in exploring.

ACKNOWLEDGMENTS

The authors wish to thank Richard Barnes, Roger
Dingledine, and Peter Eckersley, for helpful conversations,
and thank Bill Budington, Georg Koppen, Ben Laurie, Wouter
Lueks, Eric Mill, Seth Schoen, Nick Sullivan, Ryan Wails and
our anonymous reviewers for helpful comments on drafts of
this paper that greatly improved it.

REFERENCES

[1] M. T. Khan, J. DeBlasio, G. M. Voelker, A. C. Snoeren, C. Kanich, and
N. Vallina-Rodriguez, “An empirical analysis of the commercial VPN
ecosystem,” in Internet Measurement Conference (IMC ’18). ACM,
2018, pp. 443–456.

[2] M. Hirani, S. Jones, and B. Read, “Global DNS hijacking campaign:
DNS record manipulation at scale,” https://www.fireeye.com/blog/threat-
research/2019/01/global-dns-hijacking-campaign-dns-record-
manipulation-at-scale.html, January 9 2019.

[3] C. C. Krebs, “Emergency directive 19-01: Mitigate DNS infrastructure
tampering,” https://cyber.dhs.gov/assets/report/ed-19-01.pdf, January 22
2019.

[4] B. Z. Wilcox-O’Hearn, “Names: Distributed, secure, human-readable:
Choose two,” https://web.archive.org/web/20011020191610/http:
//zooko.com/distnames.html, October 12 2001.

[5] “HTTPS Everywhere,” https://www.eff.org/https-everywhere.
[6] “How it works,” https://letsencrypt.org/how-it-works/.
[7] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal, “Using

BGP to acquire bogus TLS certificates,” in Hot Topics in Privacy
Enhancing Technologies (HotPETs), 2017.

13



[8] V. G. Cerf, “Self-authenticating identifiers,” Communications of the
ACM, vol. 61, no. 12, p. 5, December 2018.

[9] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in IEEE Symposium on Security and Privacy (SP), 1996, May
1996, pp. 164–173.

[10] P. Syverson, “The once and future onion,” in Computer Security –
ESORICS 2017, S. N. Foley, D. Gollmann, and E. Snekkenes, Eds.
Springer-Verlag, LNCS 10492, 2017, pp. 18–28.

[11] J. Appelbaum and A. Muffett, “The .onion special-use domain name,”
https://tools.ietf.org/html/rfc7686, 2015.

[12] D. Goulet, G. Kadianakis, and N. Mathewson, “Next-generation hidden
services in Tor (Tor proposal 224),” https://gitweb.torproject.org/torspec.
git/tree/proposals/224-rend-spec-ng.txt.

[13] P. Syverson and G. Boyce, “Bake in .onion for tear-free and stronger
website authentication,” IEEE Security & Privacy, vol. 14, no. 2, pp.
15–21, 2016.

[14] “Tor2web: browse the anonymous internet,” https://www.tor2web.org/.
[15] “Let’s Encrypt: Delivering SSL/TLS Everywhere,” https://letsencrypt.

org/2014/11/18/announcing-lets-encrypt.html, November 2014.
[16] Y. Angel, “horse25519 - an ed25519 vanity public key generator,” https:

//github.com/Yawning/horse25519.
[17] P. Winter, A. Edmundson, L. M. Roberts, A. Dutkowska-Żuk,

M. Chetty, and N. Feamster, “How do Tor users interact with onion
services?” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/winter

[18] T. Close, “Waterken™ YURL: Trust management for humans,”
http://www.waterken.com/dev/YURL/Name/, July 12 2004.

[19] M. Nottingham, P. McManus, and J. Reschke, “HTTP Alternative
Services,” https://tools.ietf.org/html/rfc7838, April 2016.

[20] D. Eastlake, “Domain Name System security extensions,” https://tools.
ietf.org/html/rfc2535, March 1999.

[21] “Root DNSSEC: Information about DNSSEC for the root zone,” http:
//www.root-dnssec.org/.

[22] “DNS, DNSSEC and Google’s public DNS service,” http://www.circleid.
com/posts/20130717 dns dnssec and googles public dns service/.

[23] R. Barnes, “DANE: Taking TLS authentication to the next level using
DNSSEC,” https://www.ietfjournal.org/dane-taking-tls-authentication-
to-the-next-level-using-dnssec/.

[24] W. Lian, E. Rescorla, H. Shacham, and S. Savage, “Measuring the
practical impact of DNSSEC deployment,” in Proceedings of the 22nd
USENIX Security Symposium. USENIX Association, August 2013, pp.
573–587.

[25] T. Le, R. van Rijswijk-Deij, L. Allodi, and N. Zannone, “Economic
incentives on DNSSEC deployment: Time to move from quantity to
quality,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, April 2018.

[26] P. Syverson and M. Traudt, “HSTS supports targeted surveillance,” in
USENIX Workshop on Free and Open Communications on the Internet
(FOCI), 2018.

[27] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” https:
//tools.ietf.org/html/rfc6962, July 2013.

[28] “2018 Certificate Transparency requirements by Google Chrome,”
https://www.ssls.com/blog/2018-certificate-transparency-requirements-
google-chrome/.

[29] “Certificate Transparency policy,” https://support.apple.com/en-
us/HT205280.

[30] “PKI:CT,” https://wiki.mozilla.org/PKI:CT.
[31] C. Evans, C. Palmer, and R. Sleevi, “Public Key Pinning Extension for

HTTP,” https://tools.ietf.org/html/rfc7469, April 2015.
[32] L. Tung, “Google: Chrome is backing away from public key pinning, and

here’s why,” https://www.zdnet.com/article/google-chrome-is-backing-
away-from-public-key-pinning-and-heres-why/.

[33] “Certificate Transparency,” http://www.certificate-transparency.org/.
[34] Q. A. Chen, E. Osterweil, M. Thomas, and Z. M. Mao, “MitM attack by

name collision: Cause analysis and vulnerability assessment in the new
gTLD era,” in IEEE Symposium on Security and Privacy (SP), 2016.
IEEE, 2016, pp. 675–690.

[35] M. Sayrafi, “Introducing the Cloudflare onion service,” https://blog.
cloudflare.com/cloudflare-onion-service/, September 20 2018.

[36] T. Moore and R. Clayton, “The ghosts of banking past: Empirical
analysis of closed bank websites,” in Financial Cryptography and
Data Security: 18th International Conference, FC 2014, Christ
Church, Barbados, March 3-7, 2014, Revised Selected Papers.
Springer-Verlag, LNCS 8437, 2014, pp. 33–48. [Online]. Available:
http://tylermoore.ens.utulsa.edu/fc14ghosts.pdf

14


